Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Table of Contents

...

Currently, many (but not all) agency data are already published online through services such as ESRI web maps, excel files, or in some cases public APIs. However, important aspects for a given data type (such as water table level measurements from wells) such as data/time formats, geospatial projections, column names, and units vary from agency to agency and even from dataset to dataset within agencies. In order to allow users to access data from multiuple agencies in one format, the NMWDI architecture will route all agency data through one Web API standard with one corresponding underlying data model that references one common statewide water data controlled vocabulary. As long as each agency somehow serves their data through the common Web API, data storage can be federated (i.e. not centralized), although some degree of centralization can be accomodated if that is most convenient for a given dataset. Each agency’s standardized API will be published through a central portal with an NMWDI administered API Management Platform. Users can send API requests to the management platform, which will route these requests to the agency APIs and in turn forward the responses to users. However, whether data storage is federated across agencies or centralized, all contributing agency data will be required to be mapped to the common data model amd controlled vocabulary and transformed into the common format before being delivered to users. This basic data flow is illustrated in Figure 1.

...

The above basic data flow requires a state-wide data model and , API standard, and controlled vocabulary. The NMWDI has chosen the OGC SensorThings API as the model and standard. The OGC is the Open Geospatial Consortium, an international standards organization that creates and publishes open standards for geospatial data management, processing, and sharing. The NMWDI will create a moderated controlled vocabulary service to enable consistent transformation of agency datasets to a common presentation for users.

The STA data model

The STA data model is based on the Observations and Measurements data model of the OGC, which itself underlies many environmental science data systems that integrate data from many independent organizations. Examples include the CUAHSI HydroClient that provides centralized access to global streamgage, monitoring well, and meteorological networks; and the National Groundwater Monitoring Network that provides centralized access to standardized high-frequency groundwater level and quality data from federal, state, and local agencies. The STA data model provides a unifying metadata standard and data structure standard that can model any data generated about point or polygonal locations on earth. It is important to be able to map agency data to this data model in order to structure each agency’s data in a compatible format and to provide a seamless data request experience to users. The STA data model shown in Figure 2 below, and full specified in this OGC Specification.

...

SensorThings Entity

Description

Example: NMBGMR Aquifer Monitoring Well

NMED Drinking Water Quality Monitoring

NMOSE Water Withdrawal Monitoring

Metadata

Location

A unique coordinate or area on the surface of the earth

Location in latitude and longitude or UTM easting and Northing (UTM Zone 13, NAD83)

Street Address (possibly with associated latitude and longitude). (e.g. 3960 PRINCE ST)

Location in easting and northing (UTM NAD83 in meters)

Thing

Some real-world thing with which one or more Sensors are associated

Well Point ID WL-0150

Sample Pt RT236I

Point of Diversion POD Number A 00008 AS

Datastream

A collection of Observations about an ObservedProperty produced by a Sensor associated with a Thing

Time series, Hydrograph

Sample Results

Meter Readings (Quarterly)

Datastream/observationType

The type of observation, codified in the Observations and Measurements data standard. Types include Categorical (defined text), Count (integer), Measurement (continuous number), Observation (free text), and TruthObservation (True/False)

Measurement

Categorical or TruthObservation

Measurement

Datastream/unitOfMeasurement

A three-item definition of the unit of measurement, including its name, symbol, and link to the definition (preferably to one provided in an established ontology such as http://unitsofmeasure.org/ucum.html or http://qudt.org/)

feet (e.g. http://qudt.org/vocab/unit/FT)

TCR Result

Acre-Feet (e.g. http://qudt.org/vocab/unit/AC-FT)

Sensor

The procedure used to provide a Datastream. Can be a particular data recording device model, or a defined procedure followed by a human observer. If applicable, a specific instance (e.g. a sensor model and serial number)

Steel-tape measurement; Continuous acoustic sounder

9223B-PA (https://www.standardmethods.org/doi/10.2105/SMWW.2882.194)

MCCROMETER Diversion Meter-Meter Number 17147

ObservedProperty

The raw or processed phenomenon (quantitative or qualitative) being measured for the Datastream. Preferably including a link to a definition provided by an established ontology or controlled vocabulary such as the ODM2 Controlled Vocabularies or http://qudt.org/)

Depth to Water Below Ground Surface (BGS)

Analyte (e.g. Coliform (TCR) (3100))

Mtr Amount

OPTIONAL: FeatureOfInterest

The real-world feature that the Observations are about. This may or many not be different from the Location where the Thing on which the Sensor is mounted. Can include a JSON-formatted point location or a polygon or collections thereof.

Formation (e.g. https://maps.nmt.edu/maps/data/hydrograph/formation_lu)

Public Water System (head office location or service area boundary) (e.g. Albuquerque Water System PWSID NM3510701)

Water Right (set of relevant points of diversion)

Data

Observation

A single measurement value including the result, time values, and other metadata. Information on the ObservedProperty that was measured by what Sensor is provided by the Datastream these observations are in. Features of Interest are linked for each observation as well. Observations are linked to (collected in) Datastreams

Depth Measurement

Sample (e.g. 763391)

Meter Reading

Observation/result

The actual measured value, with valid values defined in observationType and units defined in unitsOfMeasurement, both provided by Datastream

Depth (e.g. 337.08)

Sample Result (P (Positive/ Coliform found) A (Negative/ Coliform not found))

Mtr Amount (e.g. 107.948)

Observation/phenomenonTime

The date+time (or interval) in ISO 8601 format (YYYY-MM-DDT:HH:MM:SS-Z) when the observation occured

2019-01-31 00:00:00

MP (Monitoring Period) (e.g. 01-01-2020 to 01-31-2020)

1/20/2017-04/05/2017 (Quarterly period for which volume was measured)

OPTIONAL: Observation/resultTime

The date+time that the result was generated. May be the same as phenomenonTime

Date (e.g 01-06-2020)

04/05/2017 (date of meter reading)

OPTIONAL: Observation/validTime

The date+time interval during which the Observation can be used (often used for provisional values that are replaced by QA/QC’d observations)

OPTIONAL: Observation/resultQuality

A description of the result Quality. Will vary according to agency practice. Can use ODM2 controlled vocabulary for data quality types as a guide.

Precision (e.g. “within two hundredths of a foot”)

...

NMWDI will provide template .csv and/or .yaml files to be populated by Agency database SQL exports and/or transformations of existing tabular data files. Some of the fields should be filled with URIs from a controlled vocabulary. Note that this an extra step from the table representing the mapping exercise from agency data to the STA data model model. A variety of tools and scripting languages can be used to export data from databases and export such files. The template will be formatted similarly to this:

...